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1 Introduction

The literal meaning of Bayesian interpretation would be an interpretation method
based on two models: one of generation probabilities p(u|i) (the probability of
an utterance given a message, meaning or interpretation) and the probability
p(i) of the message, meaning or interpretation i itself. (Both models must be
context dependent, i.e. p(i) should really be p(i|c) and p(u|i) p(u|i&c), but the
dependence on c will not be in the notation in the following.).

By Bayes’s theorem the most probable meaning of an utterance u, maxip(i|u)
equals the interpretation for which the product of p(i) and p(u|i) is maximal,
i.e. maxip(i|u) = maxip(i)p(u|i).
It will be argued that the human interpretation mechanism is an emulation of
Bayesian interpretation based on the capacity to simulate utterance production,
the ability to rank hypotheses by plausibility and on direct cue-based association
based on the utterance. Cue-based association (“the direct method”) by itself
cannot reach the accuracy of human beings, as argued in section 2. Section 3
explains the model and gives some arguments for it.

The point of this paper is to apply the model to first language acquisition in
section 4. Bayesian interpretation (and the corresponding production model)
or rather its human emulation turns out to impose a natural order on the
different stages of acquisition and is able to deal with production-comprehension
asymmetries in acquisition.

2 The ambiguity problem and the direct method

The ambiguity problem forms the motivation for stochastic computational lin-
guistics. Rule based grammar, a treatment of the lexicon in which all readings
of a word are treated equally and pragmatics without preferences lead to a very
large set of interpretations for a given utterance. Any single reading has only a
very small chance of being the right one. Human interpreters are rarely aware
of other readings however and are overwhelmingly right in their interpretations.
A proper treatment of the interpretation of NL utterances must therefore aim
to explain not just what interpretations are possible but try to predict what
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interpretation a human interpreter would obtain for the utterance. This in-
terpretation can be equated both with the interpretation the speaker intended
and with the most probable interpretation in the given context. If the speaker
intended a interpretation that is not the most probable in the context, she
would have noticed it and would have produced a different utterance instead.
The speaker is also an interpreter and can predict what the interpreter of the
utterance would do.

The ambiguity problem is rarely taken in its full generality. It must be divided
in a number of subproblems.

1. Sound signal to strings of words (speech recognition)

2. Strings of words to syntactic structure (parsing)

3. Word to concept (lexical disambiguation)

4. Syntactic structure to logical form (especially scope of operators)

5. Context integration (resolution of pronouns, presupposition triggers, demon-
stratives, particles, nouns, names, tense, discourse relations, etc.)

For each of these, there exist computational approaches to disambiguation.

Speech recognition is —like other signal processing— wrought with uncertainty,
even in the presence of high quality physical measurement and abundant train-
ing data. Due to the nature of the data, the standard method in the area is
Bayesian: a language model maximises the likelyhood of the message and an
articulation model computes how likely it is to lead to the message. A consid-
erable degree of uncertainty however remains.

The large number of syntactic ambiguities generated by large coverage gram-
mars has been effective in generating a reorientation in parsing from logical
methods to stochastic methods in which finding the most probable parse (given
a corpus) is the aim. These methods differ from classical parsing in being
full-coverage and in coming up with a most preferred parse.

Lexical ambiguities are an important source of ambiguity. The standard wisdom
is that these should be eliminated using the context, and there are implemented
systems.

It is nowadays generally assumed that there are various ways of turning a syn-
tactic structure into a logical form. It may be possible to use stochastic methods
here as well.

One aspect of context integration has been well studied: pronoun resolution.
Various approaches have been developed, including stochastic ones. Pronoun
resolution is however only a small part of the real problem of context integration,
which has not been explored in its entirety from a stochastic perpective.

In all these cases, probabilities have to be extrapolated and cannot be deter-
mined by just counting: there are infinitely many speech signals, sentences and
contexts and even if finiteness could be assumed (e.g. by assuming a maximum
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length), the number of available data will be insufficient for directly determining
the probabilities due to data sparseness. The methods first make the number
of events sufficiently small for allowing counting (data sparseness does not go
away but becomes managable) and formulas compute the probabilities for the
larger events. While theoretically, this can be just the right thing, in practice it
does not seem that it is: there are considerable error rates that get eaten away
ever more slowly in ongoing research, in the well-researched areas like speech
recognition and parsing.

The problem is not that the individual modules lack quality or applications.
Where they exist, they are the best methods there are. There is however a
problem when they should be combined into a single method for disambiguation.

Assume that each module has a success rate of 0.9 (a realistic figure for the
existing systems). Then that gives a success rate of 0.58 only for the composition
of all the systems. And it is not clear how that figure can be improved, apart
from improvements in the components.

If humans would interpret utterances by this direct method, they would run
into the same problems. There is no reason to assume that they have miracu-
lous capacities of stochastic estimation or more data to work with: it is quite
the reverse. The stochastic methods employ vast data sets and have very so-
phisticated mathematics. If humans were using the direct method, they would
be well below the 58% success rate and they very clearly do better.

3 The Model

It is much more likely to assume that while humans can use the composition
of the direct estimates as a heuristic tool in achieving probable interpretations,
they are in fact boosting the probability of their interpretations by using the
Bayesian strategy, i.e. by finding maxima for the product of the probability of
the interpretation in the utterance situation and the probability of the utterance
given the interpretation in the utterance situation. They are good at estimating
the probabilities of natural events (a crucial skill in perception and deciding on
action) which makes it possible to compare the content of messages for their
probability. And crucially, they can reliably estimate the probability of the
utterance given the interpretation by simulated language production.

Given the problems noted above, this is the only way towards a more accurate
estimation of the most probable interpretation.

The direct method can be used for selecting the most promising candidates and
can also be used as the baseline for the Bayesian method. In a case where the
direct method has selected the correct interpretation, the interpretation will also
have a maximal product of the two probabilities, i.e. likely competitors must
be less probable or the utterance must be worse as a formulation of them than
the winner. It is therefore highly improbable that the correct interpretation
will be deselected by the integrated algorithm.

The proposed algorithm makes two assumptions. The first is that the estimation
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of the probability of the utterance given the interpretation can be reduced to a
classification in high, lower, low and very low probability, corresponding with
correct, correct but unusual, incorrect but recoverable and incorrect. Further,
that the interpretations can be ordered by their a priori probability. Both
assumptions are weaker than the assumption that the brain can do proper
numbers for both probabilities.

The algorithm is given as follows.

1. Obtain the k(u) best results of the direct method.

2. Consider only the best results in terms of the generation probability clas-
sification (only the high probable ones, if there are any, else only the lower
probable ones, if there are any, else only the low probable ones, if there
are any, otherwise all the results).

3. Pick the most probable interpretation from the resulting set.

Assume that the direct method is fully available, i.e. there are procedures
DM(u) and DMk(u)(u) such that the likelyhood that DM(u) = maxi(p(u|i)p(i))
is reasonably high (below 0.58, but still substantial) and the likelyhood that
maxi(p(u|i)p(i)) ∈ DMk(u)(u) is very high. This would seem to be a matter of
selecting k(u) appropriately high.

Now further assume that DMk(u)(u) can be accurately ordered by p(i) and
classified by p(u|i).

(1) BM(u) = maxi∈{i∈DMk(u)p(u|i) is high}p(i) if defined
otherwise maxi∈{i∈DMk(u) : p(u|i) is lower}p(i) if defined
otherwise maxi∈{i∈DMk(u) : p(u|i) is low}p(i) if defined
otherwise maxi∈DMk(u) : p(i)

Now consider a normal speaker, knowing the language and able to monitor her
utterance by a simulated interpretation. Having a normal speaker implies that
the intended interpretation will score a high value on p(u|i). Monitoring implies
that there will not be an equally or more probable alternative interpretation
with a large value in DMku(u). Under these assumptions and conditioned by the
likelyhood that maxip(u|i)p(i) is in DMk(u)(u) and under the assumption that
the interpreter does a good job in estimating both p(i) and p(u—i)$BM(u) is in
fact maxip(u|i)p(i). Assuming 0.95 as the likelyhood of both having a normal
self-monitoring speaker and maxip(u|i)p(i) ∈ DMk(u), this will give roughly
the same success rate of 0.95 for the whole process, i.e. well above the baseline.

The speaker can however still express herself in an unusual way, make mistakes
or be less than fully competent. The reliability of BM(u) drops in those cases.
In a conversational setting, these are the cases where the hearer will check the
interpretation by producing grounding moves.

One cannot do away with the direct method. In that case one would have to
compare all the infinitely many possible interpretations and check whether they
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are optimi for p(u|i): this is a bad search problem. The search space needs to
be trimmed and the direct method is the most rational method for doing that.
One cannot start from the most likely interpretations either, since it is definitely
possible to say very surprising things which would come up long after the more
likely interpretations.

The hypothesis of this paper is that the human brain implements a version
of the algorithm above. It implements it as a single associative process that
incorporates (a), (b) and (c).

(2) a. beam search for full interpretations on the basis of cues
b. maximising probability of the message in the context
c. simulated generation

(a) recognises cues for activation and treats the activated entities a further
cues for new activations. Recognised phonological cues activate words, words
activate concepts, concepts activate links to their arguments and components
of the given linguistic context and of the background.

An association path to an interpretation is successful if all incompleteness in
concepts has disappeared, all the words are used and the combination forms a
proper speech act of the speaker.

The results can then be pictured as a combination of a complete dependency
graph and a resolution graph which can be interpreted as the representation
of the context updated by the utterance and as the intention of the speaker to
bring about that update.

(b) biases (a) by frequency, recency and expectation. This is what comes out of
priming research: word sense priming is influenced by these factors. It is here
generalised to larger units of meaning and to links to components of the context.
In 3.3, it is argued that these factors contribute to the a priori probability of
the interpretation.

(c) is the same mechanism that transforms a thought into speech in language
production. Within the combined process it deactivates candidate interpreta-
tions whose preferred expression does not match the perceived signal.

In the following five subsections, arguments for the hypothesis will be presented.

3.1 Bayesian interpretation

As we saw, the mechanism above approximates: Interpret u by i such that
p(i)p(u|i) is maximal.

It gives the intended interpretation i iff the speaker has chosen u such that
p(i|u) is high, i.e. that the utterance is correct for the interpretation.

It is not infallible: there is no guarantee that beam search will hit the maximum
and there can be discrepancies in the estimation of p(i) and p(u|i). But it can
be assumed that it is highly accurate under favourable circumstances.
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3.2 Evolution

Any kind of perception can be described as the attempt to find the most prob-
able explanation of a signal.

An explanation is finding some state of affairs that would cause the signal. The
probability of the explanation is increased with the probability of the state of
afairs and with the probability that the state causes the signal.

Perception —but also explanation that is not perception and planning— there-
fore requires the estimation of the probabilities of states of affairs (in a context).
It also requires causal reasoning: how likely is it that the state of affairs causes
the signal (the phenomenon to be explained, the goal of the plan).

In the explanation of behaviour of others, the causality can be judged partly
by estimating how easily the explanation leads to the observed behaviour by
trying to simulate the planning of the behaviour and the behaviour itself.

Since language interpreters can speak, they can simulate the language behaviour
they observe.

Interpretation of language is a special case of perception. Humans are very good
at it because they combine the estimation of the probability of the interpretation
with simulation and perceptual cues.

The evolution of language understanding is then just adapting normal percep-
tion to the special case of language, using the already existing model of a priori
probability of percepta. The real evolutionary event in the evolution of language
(or more appropriately the evolution of dialogue involving human language) is
the emergence of language production. The real event in the emergence of lan-
guage understanding is exapting the emerging production for understanding.

Evolutionary considerations are also relevant for the conditions under which
the mechanism is a good approximation to p(i)p(s|i).
Failure can be the consequence of three factors:

(3) a. beam search misses the maximum.
b. there is a distractor that is more probable but has a similar
value for p(u|i).
c. discrepancies between the models of the probabilities.

Factor (c) cannot be eliminated and will cause communication errors. But
the speaker can see both that the intended interpretation is not activated by
beam search and that there are distractors. Speaker self-monitoring is just the
postulate that the speaker rejects the utterance in favour of another in both
cases.

Syntax makes distractors rare. If there are two interpretations of an utterance
that can be distractors of each other, they should preferably not both have a
high p(u|i). More abstractly, for a given u, there should be few i such that
p(u|i) is high.

Both syntax and speaker self-monitoring will be reinforced in the evolution of
language use. Speaker self-monitoring directly pays off in higher communicative
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success rates. Any formal device that rules out distractors will be promoted by
speaker self-monitoring and has a chance of becoming a strict rule.

It is plausible that the interpretation mechanism has worked like this since
the start of the evolution of human languages. It follows that it has been
a side condition (changing only in the simulation of the emerging production
mechanism) under which production has emerged. It should follow that beam
search is good enough for the decoding of the productions, it will almost never
miss the intended interpretation.

Speaker self-monitoring is likewise enforced by evolution: without monitoring,
the communicative success rate is lower. If communication has a survival value
(as shown by the emergence of language), it follows that speaker self-monitoring
also has survival value. And the resources it requires are just there, it is the
interpretation mechanism.

3.3 Linguistics

Production OT is not just a good tool for the description of phonology, mor-
phology and syntax, it can also be turned into a good model of p(u|i). This
has been shown by Boersma (see e.g. ?) and has been adopted in studies of
free variation (?, ?). The one criticism of the model is the lack of speaker self-
monitoring in production OT (?). ? discusses similar phenomena in phonology,
but solves the problem in a different way. Other models can be proposed that
provide similar models of p(u|i), e.g. harmonic grammar (?, ?). In such mod-
els p(u|i) is accurately estimated by a grammar that is learnt by the learning
algorithm that comes with the model.

Second, pragmatics can be reduced to probability maximisation. This is the
essence of Hobbs’ interpretation by weighted abduction, when the costs as-
signed to the explanation rules in abduction are interpreted by probability, as
? proposes.

Within OT, ? gives a model that proposes three constraints:
plausible > *new > relevance. plausible is about the probability of the
message in the context: this should be maximised. It contains two aspects:
the prediction of the hearer about what the speaker is going to say at the
particular moment in the conversation. The other is the probability of the
particular content in the context (Do pigs fly?).

The other two principles can be seen as reflecting perceptual biases in normal
perception, especially vision: *new prefers minimal changes to what is already
given and relevance is the assumption that the interpretation should be taken
as settling activated issues (including ones that are activated by the utterance)
whenever it can do so. These two principles can be identified with the recency
and expectation effects in priming.

Speaker self-monitoring predicts that the speaker will notice these perceptual
effects on interpretation and will try to avoid them if they are not intended. It
therefore follows from the existence of speaker self-monitoring that the effects
increase the probability of the interpretation that they enforce. It is therefore
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correct to equate this style of OT pragmatics with probability maximation as
well.

The argument from linguistics is that models of both components of Bayesian in-
terpretation have come out of linguistic research: the probability of the message
in the context and of the probability of the utterance given the interpretation.
This in marked contrast to what linguistics has achieved in interpretation by
the direct method: there is no comparable model.

It should be noticed that probability maximisation on the content level is not
linguistics, but world knowledge. For a proper implementation of probability
maximation, it would be necessary to develop a connection between the sophis-
ticated models in knowledge representation in AI (e.g. Bayesian nets for causal
reasoning or frames) and the corpus based methods of stochastic computational
linguistics.

3.4 Psychological and neurological evidence for hypothesis

Studies about priming were already mentioned. The bias towards recency, fre-
quency and expectation is however not limited to linguistics, but has also been
observed in vision and other perception.

There is very considerable evidence for self-monitoring on many levels during
production (?, ?, ?, ?). For the hypothesis, one merely has to assume that part
of self-monitoring happens before articulation and is automatised. It would
cover what in OT has been known as expressive constraints or recoverability. ?
proposes to limit automatic self-monitoring to an ordered set of features: the
presence of the feature in the input inhibits a production that is also optimal
for the same input without the feature. This deselects the production if there is
an alternative optimal production which is not also optimal for this competitor.

It is tempting to interpret the mirror neuron systems (?) as involved in sim-
ulation tasks with the aim of boosting perception. The other purposes that
have been proposed for the mirror neuron system seem less convincing: not
all species with mirror neurons imitate or learn by imitation. The case where
understanding can be equated with simulation seems limited to understanding
emotions (these are states of the motivation system and as such cases where
simulation exhausts their understanding).

The proposal is to give simulation (the best model of p(u|i)) together with prob-
ability estimation of the message a role in the improvement of perception and
understanding. The direct method gives perception and understanding, but
their accuracy (and thereby their scope) is relatively low and boosted signifi-
cantly if simulation and probability maximation are integrated in the perception
and understanding mechanisms in the way sketched above.

The mirror neuron systems seem to do simulation in perception and their evolu-
tionary explanation may well be that simulation —in combination with semantic
memory— dramatically increases the quality with which the behaviour of oth-
ers is perceived. The interpretation of mirror neurons as involved in improving
visual perception along Bayesian lines has been adopted by ?.
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Mirror neurons come with the question what functional advantages created
them in evolution. This question must have an answer, otherwise they would
not exist. Bayesian perception is a simple answer to this question. While
other answers may still be forthcoming, the existence of mirror neurons and
the Bayesian answer is an additional reason for taking Bayesian accounts of
perception seriously.

4 Learning

There are now four components (4) in our model. (a) and (b) are fully in-
tegrated into biased beam search and form the implementation of (d). The
four components form one module activated in production and perception: bi-
ased beam search activates simulation/production and simulation/production
activates biased beam search.

(4) a. beam search
b. plausibility maximation
c. simulation/production
d. speaker self-monitoring

Simulation/production in interpretation is an inhibition mechanism: bad match
(the interpreter would not say it this way) with the utterance deactivates in-
terpretations.

(5) a+b ← c

Monitoring interpretation (d, using a+b) inhibits production: a bad match (in
the sense of not making important input features recoverable) with the input
for c deactivates production plans.

(6) c ← a+b

The application to learning is based on two impossibilities: one cannot simulate
speaking unless one can speak and one cannot monitor one’s speaking unless
one can understand.

But this seems too categorical: one can always speak a little bit and understand
a little bit. A much better formulation is to assume that the inhibitory links
grow stronger with the skills that are acquired to the degree that they improve
speaking and understanding. This is normal learning: good experience with
the inhibitory links makes them stronger, bad experience makes them weaker.
The proposal is that the inhibitory links are always there and grow stronger
with the emergence of better speaking and understanding.

The one thing that can be learnt directly are associations between words (or
morphemes) and concepts. This is a finite problem1.

1If one takes phoneme learning to be integrated in word learning. Otherwise this would
be a similar task of learning associations between articulatory gestures and perceptual cues
fromn which these gestures can be recognised.
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One should assume that children start with learning such associations passively
by hearing the word in the presence of instantiations of the concept. If they
have the concept, this builds an association. It is clear however that strong
feedback only comes with the attempts to use the word oneself: in speaking
one gets what one wants or not.

Word learning happens at a point where perception, explanation, planning,
communication and concepts are already in place. Initially, learning is building
associations between words and concepts activated when the word is used. Word
production offers the possibility of further feedback and what is constructed is
a situation where words activate concepts and concepts pronunciations of the
word. Once this is in place, simulation in understanding (would I use this word
in this situation?) and self-monitoring (will I be understood when I use this
word?) can start functioning.

Simulation makes it possible to recover from wrong interpretations (coming
from non-linguistic cues which obliterate the association evoked by the word).
Self-monitoring and feedback can prompt the mobilisation of alternative means
of expression.

Word Combinations

In early word combinations there appears to be no syntactic categories, mor-
phology or meaningful word order, with the possible exception of putting the
topic first.

The feedback at this stage is weak: none of these factors is decisive for under-
standing. The adult input is also not directly helpful: it will consist mostly of
words that are not understood.

The emergence of simulation in understanding will provide the learning data
for syntax and morphology, of the kind needed for OT learning. The child
understands the adult as meaning i which it could express as u′ unlike the
observed u. This can demote those constraints that make u′ a winner.

The emergent self-monitoring will drive the child towards extra complexity i.e.
to go for more words.

Multiword utterances are the result with a concomitant boost of simulation,
grammar learning and the emergence of morphology and word order. Since
morphology and word order do help, simulation at this point leads to an adult
level of understanding.

The final step is the development of further self-monitoring leading to strategic
“pragmatic” production: NP selection, pragmatic use of particles and connec-
tives.

The picture can be summarised as follows

1. perception, explanation, planning, communication and concepts

2. direct word learning

3. word production

4. word simulation in understanding
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5. word combination production

6. simulation for word combinations

7. syntax learning

8. syntactic understanding (with full simulation)

9. self-monitoring on full utterances

Does this picture fit the facts?

Acquisition starts with single words expressing concepts in which the holes have
to be filled in from the context of utterance. In the considerations above, the
important fact is that direct learning is possible for words. This leads to a table
of word-concept associations that can be run in both directions and one word
utterances are the result.

Self-monitoring in word production has to emerge for the two word stage: some-
times the context gives the wrong binding. (7) will give better results if the
object of eat is not the contextually salient porridge.

(7) Eat cookie.

The same mechanism is responsible for longer utterances.

The advent of utterance of two and more words will produce the data for OT
learning of syntax and morphology. An understood utterance will be simulated
from the understanding, but rather than suppressing it will bring reranking
in the syntactic constraint system, eventually leading to a correct production
grammar.

This is the point where syntax and morphology start emerging in the output.

There is a lot to be said about this process, but not from the perspective of
this paper, but from the perspective of e.g. OT syntax learning. An option
is to start with equally ranked constraints that become ranked with respect to
each other in the process, so that fewer and fewer productions are going to be
permissible.

The emergence of syntax will boost understanding by allowing simulation, so
that adult level self-monitoring becomes possible. E.g in wanting to express
(8a) (8b) should be suppressed for the same interpretation, even though it is
perfectly correct from a syntactic point of view and would even be the preferred
formulation for more likely causes of falling.

(8) a. John fell. Because Mary smiled at him.
b. John fell. Mary smiled at him.

A similar example is (9), where (b) is incorrect unless it occurs in a list answer.

(9) a. John fell. Bill fell too.
b. John fell. Bill fell.
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According to ? appropriate use emerges after everything else. Unsurprisingly
perhaps, this is also the part of text generation that is still the least understood
and makes free text generation as problematic as it still is.

4.1 Application: the reflexive asymmetry

It has been observed (see references in ?) that young children go through a
phase in which reflexives are produced correctly, but where non-reflexive pro-
nouns can be understood reflexively. In this way, these children can understand
(10a) as (10b) but not inversely.

(10) a. The elephant hits him.
b. The elephant hits himself.

In the model of this paper, this is easily understood. These children are in
a phase where production of reflexives has been learnt, but where simulation
in understanding with respect to reflexives has not yet taken effect. As pure
concepts, the two pronouns can be described as (11).

(11) him
associated concept: a salient old referent
himself
associated concept: a commanding old referent in the same
clause

And this predicts that normal pronouns will have reflexive interpretations: the
commanding old referents are also highly salient.

The explanation of this effect in ? rests on the assumption of a very specific
constraint system and breaks down if this is replaced by a more plausible one.
Another explanation by ? rests on a complication of the already difficult and
hard to motivate non-standard bidirectionality proposed by ?. Both of these
approaches were developed with the specific aim of solving the asymmetry and
are difficult to motivate without it. Here it is a prediction of the model: there
will be a delay between acquiring production of some part of syntax and the
onset of production simulation for that part of syntax.

It is matched by the similar prediction of a delay between the onset of self-
monitoring in production and the acquisition of understanding. There is some
evidence for this: correct use of optional particles seems to very late (?). But
a similar study on other phenomena for which self-monitoring seems plausible
like word order freezing or optional case marking has to my knowledge not been
carried out. The prediction would be that (12a) can be produced for (12c) up
to some age and be understood as (12c) even longer before full adult blocking
is reached.

(12) a. Mat ljubit doc
b. Mother loves daughter.
c. Daughter loves mother.
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The explanation of ? for the asymmetry is the late onset of bidirectionality due
to resource limitations. This makes the problematic prediction that in old age
a similar asymmetry would be observable. There are indeed observations that
self-monitoring fails in old age, e.g. that pronouns get used more frequently
when the antecedent is not easily accessible.

This prediction is not carried over in Bayesian interpretation. The inhibitory
effects of simulation and automatic self-monitoring merely gets stronger and
there is no reason why it should get weaker in old age. Non-automatised self-
monitoring can indeed become weaker.

5 Conclusion

The paper presents a model of language interpretation (and production) which
has a strong fit with looking at the brain as embodying Bayesian optimisation
in perception, reasoning and other tasks (?, ?, ?).

The aim of this paper was to show that it leads to a natural temporisation and
explanation of asymmetries in acquisition. It contrasts with the model assumed
by ? in having a stable architecture in which the bidirectional links become
stronger when they start having a beneficial effect. It is moreover compatible
with any reasonable syntactic description of the phenomenon.

The Bayesian approach to interpretation is a rich source of insights and the
application to language learning is just an example. It was surprising to at
least the author —though he should not have been surprised in the light of the
work of Hobbs— that pragmatics comes out as probability maximation of the
message (under the assumption that the speakers accommodate for perceptual
bias).

Another surprise is that the Bayesian view comes out squarely on the side of
those who advocated a production perspective in syntax. Early transforma-
tional grammar in which most of the action is in the mapping of deep structure
(conceptual structure) to surface structure, generative semantics, functional
grammar, systemic grammar, harmonic grammar and standard optimality the-
ory are cases in point and each leads to a model of the probability with which a
message is realised as a particular utterance. Harmonic grammar and stochas-
tic optimality theory are merely the most sophisticated proposals by being the
only ones that integrate probabilities.

The model also predicts problems in interpretation when the profile of p(u|i)
becomes too flat for the i parameter: for a particular beam search for an utter-
ance there should preferably be one peak only for the candidate interpretations
found. This will make interpretation more reliable. Morphology and/or reg-
ulated word order would be the devices that bring this about. So Bayesian
interpretation predicts that there is syntax. Even if a language seems to lack
any of these formal devices (e.g. ?) there must still be strong preferences in
production that can fill this functional role, unless speaker self-monitoring (i.e.
the natural probabilities of the message) can take over entirely.

13



References

Blackmer, E. R. and Mitton, J. L. (1991). Theories of monitoring and the
timing of repairs in spontaneous speech. Cognition, 39:173–194.

Boersma, P. (2007). Some listener-oriented accounts of h-aspir in french. Lin-
gua, 117.

Boersma, P. and Hayes, B. (2001). Empirical tests of the gradual learning
algorithm. Linguistic Inquiry, 32:45–86.

Bresnan, J., Cueni, A., Nikitina, T., and Baayen, R. H. (2007). Predicting the
Dative Alternation. Cognitive Foundations of Interpretation, pages 69–94.

Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N., editors (2007). Bayesian
Brain: Probabilistic Approaches to Neural Coding. MIT Press.

Friston, K. and Stephan, K. (2007). Free energy and the brain. Synthese, pages
417–458.

Gil, D. (2005). Word order without syntactic categories: How riau indonesian
does it? In Carnie, A., Harley, H., and Dooley, S. A., editors, Verb First,
pages 243–263.

Goldwater, S. and Johnson, M. (2003). Learning ot constraint rankings using
a maximal entropy model. In Spenader, J., Eriksson, A., and Dahl, O., edi-
tors, Proceedings of the Stockholm workshop on Variation within Optimality
Theory, pages 111–120. Stockholm University.

Hendriks, P. and Spenader, J. (2005/2006). When production precedes compre-
hension: An optimization approach to the acquisition of pronouns. Language
Acquisition: A Journal of Developmental Linguistics, 13:319–348.

Hobbs, J., Stickel, M., Appelt, D., and Martin, P. (1990). Interpretation as
abduction. Technical Report 499, SRI International, Menlo Park, California.
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